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Abstract

We present a spectral-element discontinuous Galerkin thermal lattice Boltz-

mann method (SEDG-TLBM) for fluid-solid conjugate heat transfer appli-

cations. In this work, we revisit the discrete Boltzmann equation (DBE) for

nearly incompressible flows and propose a numerical scheme for conjugate

heat transfer applications on unstructured, non-uniform mesh distributions.

We employ a double-distribution function thermal lattice Boltzmann model

to resolve flows with variable Prandtl (Pr) number. Based upon it’s finite

element heritage˝, the SEDG discretization provides an effective means to

model and investigate thermal transport in applications with complex ge-

ometries. In particular, we numerically investigate the effect of Reynolds

(Re) number on the conjugate heat transfer around a circular cylinder with

∗Corresponding Author
Email addresses: saumil.patel134@gmail.com (Saumil S. Patel),

mmin@mcs.anl.gov (Misun Min), uga.kalu@gmail.com (Kalu Chibueze Uga),
thlee@ccny.cuny.edu (Taehun Lee )

Preprint submitted to Elsevier January 22, 2015



volumetric heat source. Our solutions are represented by the tensor product

basis of the one-dimensional Legendre-Lagrange interpolation polynomials.

A high-order discretization is employed on body-conforming hexahedral ele-

ments with Gauss-Lobatto-Legendre (GLL) quadrature nodes. Thermal and

hydrodynamic bounce-back boundary conditions are imposed via the numeri-

cal flux formulation which arises due to the discontinuous Galerkin approach.

As a result, our scheme does not require tedious extrapolation at the bound-

aries which may cause loss of mass conservation. Steady-state results are

presented for Re = 5− 40. In each case, we discuss the effect of Re on the

heat flux (i.e. Nusselt number Nu) at the cylinder surface (i.e. fluid-solid

interface). In addition, the influence of the Re number on the variation of the

temperature distribution within the cylinder is studied. Our results are vali-

dated against the Navier-Stokes spectral-element based computational fluid

dynamics (CFD) solver known as Nek5000.

Keywords: Conjugate Heat Transfer, Spectral-element method,

Discontinuous Galerkin method, Lattice Boltzmann method

1. Introduction

Conjugate heat transfer (CHT) occurs when energy/heat is transferred

between two different mediums that are in contact with each other. The pro-

cess is observed in numerous engineering applications: the drying of different

materials (paper, steel, glass), food processing, cooling of electronic circuits,

and nuclear reactor processes. These examples generally involve a fluid that
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is convected over a solid surface. In the context of an incompressible fluid,

the density is independent of temperature whereby the energy conservation

equation is decoupled from the momentum and mass conservation equations.

In the absence of viscous dissipation, the energy (or temperature) is treated

as a passive scalar and is governed by convective and diffusive processes (i.e.

the advection-diffusion equation). Predicting the flow and temperature fields

for CHT by means of computational fluid dynamic (CFD) solvers can be a

difficult task, especially in complex geometries like a nuclear reactor core [1].

Another difficulty is to maintain the continuity of temperature and heat

fluxes at the fluid-solid interface. While traditional CFD methods [2, 3] have

proven successful in enforcing such boundary conditions, there is considerable

computational cost associated with the implementation [4].

Incompressible flow past an isothermal circular cylinder and the asso-

ciated convection heat transfer has been the subject of numerous research

articles. This problem is of particular importance since it exhibits a rich

and complicated flow structure around a relatively simply geometry. Yet,

from a computational perspective, the geometry requires a careful arrange-

ment of the mesh in order to capture the onset of the von Kármán vortex

street. Jain and Goel [5], were one of the first to numerically investigate this

problem using a finite-difference method. Later, using a spectral element

method, Karniadakis [2] simulated forced convection heat transfer from a

isolated cylinder in a cross-flow for Reynolds number Re = 200. A thorough

review of the early numerical and experimental studies can be found in [3].
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Many of these studies treat the cylinder with a prescribed constant tem-

perature Dirichlet boundary condition, revealing no analysis on the conjugate

heat transfer between the flow and interior of the cylinder. Understanding

how the flow affects the temperature distribution within the cylinder has been

the subject of some recent studies. Juncu [6] reported cylinder temperatures

for Re = 2 and Re = 20. Das and Reddy [7] investigated natural convec-

tion flow in a square enclosure with a central solid conducting body where

they use a finite-volume scheme to discretize the energy equations within the

flow and solid regions. Jeon et al. [8] investigated both natural and forced

convection heat transfer using the steady-state conservation equations where

the solid conducting body now had a volumetric heat source.

The lattice Boltzmann method (LBM) [9] has emerged as a reliable method

for simulating thermal flows and a thorough review of the relevant work can

be found in [10]. There are a few studies that have investigated fluid-solid

CHT via the lattice Boltzmann method. Wang et al. [4] proposed a double-

distribution model which insured temperature and heat flux continuity at the

fluid-solid interface. Yet, the scope of their applications were limited to sim-

ple Cartesian box geometries. Jami et al. [11] investigated natural convection

with a heat-generating cylinder conducting body using a multiple-relaxation-

time (MRT) lattice Boltzmann method to capture the flow field while using

a macroscopic energy equation to resolve the temperature field. Yan and

Zu [12] investigated flow past a rotating isothermal circular cylinder. Their

work also incorporated a double-distribution model with a regular lattice grid
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which requires a complex treatment to impose the hydrodynamic boundary

conditions on a curved cylinder surface. In addition, thermal boundary con-

ditions were realized through an extrapolation method which can sometimes

lead to errors in conservation laws [13]. While these studies have been able to

provide accurate and reasonable results, severe limitations persist when using

regular Cartesian grids to capture the flow physics around curved or irregular

boundaries. Considerable efforts for solving the discrete Boltzmann equation

(DBE) on irregular grids have been published and we refer the reader to [13]

to learn more.

The aim of this work is to propose a thermal lattice Boltzmann method

(TLBM) for CHT problems which can capture heat transfer between a fluid

and solid, along with the ensuing convection and/or diffusion of energy (tem-

perature) within each medium, for relatively complex geometries with ir-

regular mesh distributions. We adopt a double-distribution model [14, 15],

where the discrete Boltzmann equation (DBE) for the density distribution

function is solved to determine the momentum field and a thermal discrete

Boltzmann equation (TDBE) for the internal energy distribution function is

solved to determine the passive temperature field. Both equations are solved

via a splitting scheme that is composed of a collision and streaming (linear

advection) step. Our numerical scheme is based on the work of Min and

Lee [13] who discretized the streaming step of the solution procedure using

a spectral-element discontinuous Galerkin (SEDG) method. The approach

benefits from a high-order spectral discretization which is based on the tensor
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product basis given by the one-dimensional Legendre-Lagrange interpolation

polynomials. As a result of choosing the SEDG discretization, we benefit

from incorporating body-conforming hexahedral elements to mesh the com-

putational domain and lay the groundwork to tackle future problems with

more complex geometries. An additional advantage is the simple application

of the bounce-back boundary condition through the numerical flux (an arti-

fact of the discontinuous Galerkin approach). We can apply the bounce-back

condition in an effort-less manner which does not call for further extrapola-

tion or interpolation techniques as is done when using a regular Cartesian

lattice for complex geometries. The continuity of temperature and heat flux

across the fluid-solid interface is easily enforced by treating the tempera-

ture field in the entire computational domain as a continuous field. Abrupt

changes in thermal diffusivity across the fluid-solid interface are properly re-

flected in the relaxation terms of the collision step. Numerical results on the

forced convection of flow past a cylinder with a heat source are presented with

this model. As a first step, we present steady-state results for Re = 5− 40

and compare the SEDG-TLBM results to those provided by Nek5000 [16],

an open-source Navier-Stokes solver based on the spectral-element method.

The paper is organized as follows. In Section 2, we present the governing

equations, namely, the LBE for the mass and momentum fields and the ther-

mal LBE for the temperature fields. In Section 3, we discuss the formulation

of our numerical scheme. Section 4 presents computational results and their

validation for forced convection past a circular cylinder with heat source.
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We discuss our conclusions in Section 5. Details on the thermal boundary

conditions are given in the Appendix.

2. Governing Equations

In this section, we describe the governing equations for conjugate heat

transfer between nearly incompressible fluids and the hot solids with which

the fluids are in perfect contact. First, we derive the lattice Boltzmann equa-

tion (LBE) for a nearly incompressible fluid. This equation is based solely on

the density distribution function to obtain the mass and momentum fields.

Next, following the model proposed by He et al. [15], we then present the

evolution equation for the internal energy. Our formulation is a passive scalar

approach and uses the additional evolution equations for internal energy to

describe temperature.

2.1. Discrete Boltzmann Equation (DBE) for nearly incompressible fluids

The discrete Boltzmann equation with the Bhatnagar-Gross-Krook col-

lision model [17] for nearly incompressible fluids is written in the following

way:

∂fα
∂t

+ eα · ∇fα = −fα − f eq
α

λν
(1)

where fα (α = 0, 1, ..., Nα) is the particle density distribution function de-

fined in the direction of the microscopic velocity eα, λν is the relaxation

time, and Nα is the number of microscopic velocities. We consider the

two-dimensional 9-velocity model (D2Q9) associated with eα = (0, 0) for
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α = 0; eα = (cos θα, sin θα) with θα=(α − 1)π/2 for α = 1, 2, 3, 4; and

eα =
√
2(cos φα, sinφα) with φα=(α− 5)π/2 + π/4 for α = 5, 6, 7, 8.

The equilibrium distribution function is given by

f eq
α = tαρ

[

1 +
(eα · u)
c2s

+
(eα · u)2

2c4s
− (u · u)

2c2s

]

, (2)

where ρ is the density of the fluid; u is the macroscopic velocity; t0 = 4/9,

tα=1,4 = 1/9, and tα=5,8 = 1/36 are the weights; and cs = 1/
√
3 is the speed

of sound [18].

2.2. Lattice Boltzmann Equation (LBE) for nearly incompressible fluids

The lattice Boltzmann equation is obtained by discretizing Eq. (1) over

a time-step δt as shown in [10]

fα(x, t)− fα(x− eαδt, t− δt) = −
∫ t

t−δt

fα − f eq
α

λν
dt′. (3)

We note that this temporal integration [t − δt, t] is coupled with the space

integration [x−eαδt,x]. Applying the trapezoidal rule [19] for the integration

on the right-hand side of Eq. (3), we have the following for each term

∫ t

t−δt

fα − f eq
α

λν
dt′ ≈ fα − f eq

α

2τν
|(x−eαδt,t−δt) +

fα − f eq
α

2τν
|(x,t) (4)

and where the dimensionless relaxation time is τν = λν/δt with a relation to

the kinematic viscosity by ν = τνc
2
sδt.
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Using Eq. (4), we can now write Eq. (3) as the lattice Boltzmann equation

for a single-phase nearly incompressible fluid:

f̄α(x, t) = f̄α(x− eαδt, t− δt)− 1

τ + 1/2

(

f̄α − f̄ eq
α

)

|(x−eαδt,t−δt). (5)

Where f̄ and f̄ eq
α are the modified particle and equilibrium distribution

functions, respectively, and are defined as

f̄α = fα +
fα − f eq

α

2τ
(6)

and

f̄ eq
α = f eq

α (7)

Eq. (3) is then solved in two step:

• Collision

f̄ ∗

α(x, t− δt) = f̄α(x, t− δt)− 1

τ + 1/2

(

f̄α − f̄ eq
α

)

|(x,t−δt) (8)

which is followed by the substitution f̄α(x, t− δt) = f̄ ∗

α(x, t− δt).

• Streaming

f̄α(x, t) = f̄α(x− eαδt, t− δt). (9)

As it was shown in [10, 13] the streaming step of Eq. (9), can be expressed

as a solution of the linear advection equation, written in an Eulerian frame-
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work [20]:

∂f̄α
∂t

+ eα · ∇f̄α = 0. (10)

The density and momentum can be computed by taking moments as follows:

ρ =
Nα
∑

α=0

f̄α and ρu =
Nα
∑

α=0

eαf̄α (11)

The temperature, T , can be calculated from the density distribution function

by taking the second moment of fα. As it is noted in [15] and [21], the second

moment yields a fixed Prandtl number which means that the thermal con-

ductivity cannot be adjusted independent of the kinetic viscosity. Following

the work of He et al. [15] and Guo et al. [22], we seek to investigate ther-

mal flows with variable Prandtl number and choose not to use the density

distribution function, f , to calculate the internal energy.

2.3. Discrete Boltzmann Equation (DBE) for internal energy

In this section, we describe the DBE for internal energy, e. We adopt the

approach of He et al. [15] and introduce a new variable for internal energy

density distribution function:

gα =
(eα − u)2

2
fα (12)

Following the simplification of Peng et al. [23], where viscous heat dissipation

and compression work by pressure are neglected, Eq. (12) now leads to the
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following evolution equation for internal energy:

∂gα
∂t

+ eα · ∇gα = −gα − geqα
λe

+ tαQ̇ (13)

where λe is the relaxation time related to energy transport; tα represents

the non-dimensional weights described above and Q̇ is a constant volumetric

heat generation term. As was done for the DBE in Eq. (1), we consider the

two-dimensional 9-velocity model (D2Q9) mentioned above. The associated

equilibrium distribution function, geqα , is given as:

geq0 = −4ρe

9

(u · u)
2c2s

, (14)

geq1,2,3,4 =
ρe

18

[

1

c2s
+

(eα · u)
c2s

+
(eα · u2)

c4s
− (u · u)

c2s

]

, (15)

geq5,6,7,8 =
ρe

36

[

1

c2s
+

2(eα · u)
c2s

+
(eα · u)2

2c4s
− (u · u)

2c2s

]

, (16)

2.4. Lattice Boltzmann Equation (LBE) for internal energy

The lattice Boltzmann equation for internal energy is now obtained in

a manner similar to that of density distribution function, fα. We begin

by performing a coupled space-time integration over the timestep, δt, on

Eq. (12):

gα(x, t)− gα(x− eαδt, t− δt) = −
∫ t

t−δt

gα − geqα
λe

dt′ +

∫ t

t−δt

tαQ̇dt
′. (17)
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Using a trapezoidal rule for the integration of each term on the right hand

side of Eq. (17) along with the follow variable substitutions:

ḡα = gα +
gα − geqα

2τe
− δt

2
tαQ̇ (18)

and

ḡeqα = geqα − δt

2
tαQ̇ (19)

Eq. (17) now becomes the following lattice Boltzmann equation for internal

energy:

ḡα(x, t) = ḡα(x− eαδt, t− δt)− 1

τe + 1/2
(ḡα − ḡeqα ) |(x−eαδt,t−δt)

+ δtQ̇tα, (20)

where the dimensionless relaxation time related to the internal energy is

τe = λe/δt with a relation to the thermal diffusivity by χ = (D+2)τec2sδt
D

.

Eq. (20) is now solved via the following collision-streaming process:

• Collision

ḡ∗α(x, t− δt) = ḡα(x, t− δt)− 1

τe + 1/2
(ḡα − ḡeqα ) |(x,t−δt)

+ tαQ̇δt|(x,t−δt), (21)

which is followed by the substitution ḡα(x, t − δt) = ḡ∗α(x, t − δt) and

then the streaming process
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• Streaming

ḡα(x, t) = ḡα(x− eαδt, t− δt). (22)

The streaming step of Eq. (22), can be expressed as a solution of the linear

advection equation, written in an Eulerian framework [20]:

∂ḡα
∂t

+ eα · ∇ḡα = 0. (23)

The temperature, T , can be calculated by taking the moment:

ρe =
Nα
∑

α=0

ḡα +
δt

2
Q̇ (24)

where e is the internal energy and is related to the temperature by e =

DRT/2 where D is the dimension and R is the gas constant.

3. Numerical Discretization

In this section, we present our computational scheme. We provide de-

tails to the discontinuous Galerkin strong formulation, numerical fluxes, and

boundary conditions for Eqs. (10) and (23) . Details on the spectral element

discretizations and time-stepping schemes are also discussed.

3.1. Weak Formulation of LB Advection Equation

We formulate the weak form for Eqs. (10) and (23) defined on the com-

putational domain Ω = ∪E
e=1Ω

e with non-overlapping elements Ωe. We begin
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by writing the global solutions, f̄α(x, t) and ḡα(x, t), which will be approxi-

mated by the piecewise N -th order polynomial approximations, f̄α(x, t)h and

ḡα(x, t)h,

f̄α(x, t) ≃ f̄α(x, t)h = ⊕E
e=1f̄α(x, t)

e
h

ḡα(x, t) ≃ ḡα(x, t)h = ⊕E
e=1ḡα(x, t)

e
h (25)

where the subscript h refers to a characteristic measure of the size of the

element, Ωe. f̄α(x, t)
e
h and ḡα(x, t)

e
h represents the local polynomial solution

on the element Ωe. The next step is to define a global space Vα,h of test

functions, φα,h, such that Vα,h = ⊕E
e=1V

e
α,h. The locally defined spaces V e

α,h

are defined by V e
α,h = span{φn

α,h}
Np

n=1. Another way to describe V e
α,h is the set

of all linear combinations of φn
α,h where Np is the number of quadrature points

that are defined on the element Ωe. Details on the functional form of the

test functions, φn
α,h, are given later in this paper. For now, we indicate that

our locally defined solutions f̄α(x, t)
e
h and ḡα(x, t)

e
h are polynomials which are

written as an expansion of the test functions:

f̄α(x, t)
e
h =

Np
∑

i

(f̄ i
α(t))φ

i
α,h(x)

ḡα(x, t)
e
h =

Np
∑

i

(ḡiα(t))φ
i
α,h(x) (26)

With properly defined test functions φα,h, we multiply them with Eqs. (10)

and (23), and integrate by parts twice in a manner similar to [13], where we
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then obtain the following weak formulations:

(

∂f̄α
∂t

+∇ · Fα(f̄), φα,h

)

Ωe

=
(

n ·
[

Fα(f̄)− F∗

α(f̄)
]

, φα,h

)

∂Ωe (27)

(

∂ḡα
∂t

+∇ ·Gα(ḡ), φα,h

)

Ωe

= (n · [Gα(ḡ)−G∗

α(ḡ)] , φα,h)∂Ωe (28)

where Fα(f̄) = eαf̄α and Gα(ḡ) = eαḡα represent the flux vectors for the

density distribution function and internal energy distribution function, re-

spectively. eα = (eαx, eαy) are the microscopic velocities and n = (nx, ny) is

the unit normal vector pointing outward on the element boundary, ∂Ωe. The

numerical fluxes F∗

α(f̄) = F∗

α(f̄ , f̄
+) and G∗

α(ḡ) = G∗

α(ḡ, ḡ
+) in Eqs. (27)

and (28) are a function of the local solution (i.e. f̄α, ḡα) and the neighboring

solution (i.e. f̄+
α ,ḡ

+
α ) at the interfaces between neighboring elements. We

choose the Lax-Friedrichs flux in [13, 24] which gives the following form for

the integrand in the surface integrals of Eqs. (27) and (28):

n · (Fα − F∗

α) =











(n · eα)[f̄α − f̄+
α ] for n · eα < 0,

0 for n · eα ≥ 0.

n · (Gα −G∗

α) =











(n · eα)[ḡα − ḡ+α ] for n · eα < 0,

0 for n · eα ≥ 0.
(29)
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When n · eα < 0, we can write

n · (Fα − F∗

α) = (nxeαx + nyeαy)f̄α + (n+
x eαx + n+

y eαy)f̄
+
α .

n · (Gα −G∗

α) = (nxeαx + nyeαy)ḡα + (n+
x eαx + n+

y eαy)ḡ
+
α . (30)

The proper upwinding scheme, inherent in the Lax-Friedrichs flux, allows

momentum transfer at the element interface to depend only on those particles

that are entering into the element.

3.2. Boundary Conditions

Boundary conditions are weakly imposed through the numerical flux. The

hydrodynamic wall boundary condition, with specific details provided in [13,

25], is given as follows:

f̄α − f̄+
α =











f̄α − f̄α∗ − 2tαρ0(eα · ub)/c
2
s for n · eα < 0

0 for n · eα ≥ 0,
(31)

where f̄α∗ is the particle distribution function moving in the opposite direc-

tion of f̄α, ub is the macroscopic velocity prescribed at the wall boundary,

and ρ0 is the reference density, chosen to be unity.

Constant Dirichlet thermodynamic boundary conditions are based on the

bounce-back rule for the non-equilibrium internal energy distribution [15]:

ḡneqα − e2αf̄
neq,iso
α = −(ḡneqα∗ − e2α∗ f̄

neq,iso
α∗ ). (32)
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where eα and eα∗ have opposite directions. As was mentioned in [15], f̄neq,iso
α

is the non equilibrium density distribution function which neglects any heat

flux contributions and is solely used to treat isothermal (iso) boundaries.

The following relations for non-equilibrium are used: f̄neq
α = f̄α − f̄ eq

α and

ḡneqα = ḡα − ḡeqα . Using these relations, an expression for ḡ+α in Eq. (29) can

be determined (see Appendix for further details). We arrive at the following

formulation for the discontinuous Galerkin thermal boundary condition:

In the case of α = 1, 2, 3, 4. Then,

ḡα − ḡ+α =











Θα,1−4 for n · eα < 0

0 for n · eα ≥ 0
(33)

and for α = 5, 6, 7, 8:

ḡα − ḡ+α =











Θα,5−8 for n · eα < 0

0 for n · eα ≥ 0
(34)

where

Θα,1−4 = ḡα + ḡα∗ − 2ρeb
9

[

3 + 4.5(eα · ub)
2 − 1.5(ub · ub)

]

+ tαQ̇δt

−e2α(f̄α + f̄α∗) + e2α
(

2tαρ
[

1 + 4.5(eα · ub)
2 − 1.5(ub · ub)

])

.

Θα,5−8 = ḡα + ḡα∗ − 2ρeb
36

[

3 + 4.5(eα · ub)
2 − 1.5(ub · ub)

]

+ tαQ̇δt

−e2α(f̄α + f̄α∗) + e2α
(

2tαρ
[

1 + 4.5(eα · ub)
2 − 1.5(ub · ub)

])

.
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Since this is the thermal boundary condition we note eb is the prescribed

internal energy at the boundary which simply translates to a Dirichlet tem-

perature boundary condition. Further details on the boundary conditions

can be found in the Appendix.

3.3. Spectral element discretizations

In this section we describe the functional form of the test function φα,h.

These functions are actually chosen from the space of one-dimensional Legendre-

Lagrange interpolation polynomials which are formally given as [26]:

li(ξ) = N(N + 1)−1(1− ξ2)L′

N(ξ)/(ξ − ξi)LN (ξi) for ξ ∈ [−1, 1], (35)

where ξi are the Gauss-Lobatto-Legendre (GLL) quadrature nodes and LN(ξ)

is the Nth-order Legendre polynomial. Our choice to use quadrilateral ele-

ments, Ωe, to fill our two-dimensional computational domain, Ω = ∪E
e=1Ω

e,

enables us to benefit from the tensor-product basis which is created with

Eq. (35). Each coordinate (x, y) ∈ Ωe is mapped on the reference do-

main, (ξ, η) ∈ I := [−1, 1]2, through the Gordon-Hall mapping [26]. The

tensor-product structure of the reference element I allows us to define a two-

dimensional basis, ψij(ξ, η) = li(ξ(x))lj(η(y)) = φ. The equality to φ is used

to make the functional form of the test functions clear to the reader. We
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now replace the test functions used in Eqs. (26) with ψij and write:

f̄N
α (x, t)eh =

N
∑

i,j=0

(f̄N
α )ijψij and ḡNα (x, t)eh =

N
∑

i,j=0

(ḡNα )ijψij (36)

which are the local approximate solutions f̄N
α and ḡNα written as the finite

expansion of the ψij on Ωe. (fN
α )ij = fN

α (xi, yj, t) and (ḡNα )ij = gNα (xi, yj, t)

represents the approximate solution f̄N
α and ḡNα on the nodal points (xi, yj) at

time t. Plugging the approximate solutions of Eqs. (36) into their respective

weak formulations (i.e. Eqs. (27) and (28) we will then arrive the following

semi-discrete scheme:

df̄α
dt

+M−1Df̄α = M−1Rf f̄α, (37)

dḡα

dt
+M−1Dḡα = M−1Rgḡα, (38)

where the solution vectors are defined by f̄α = [(f̄N
α )ij], and ḡα = [(ḡNα )ij ] on

a local element. The mass matrix is defined as

M = (ψij , ψîĵ)Ωe = J(M̂ ⊗ M̂), (39)

where M̂îi =
∑N

k=0 l̂i(ξk)li(ξk)wk is the one-dimensional mass matrix with

the quadrature weight wk defined on the reference domain [−1, 1] and J =

[Jll] = diag{Jij} represents the value of the Jacobian at each node (xi, yj)

with l = i+(N +1)j on Ωe. The one-dimensional mass matrix M̂ is diagonal
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because of the orthogonal property of the Legendre-Lagrange interpolation

polynomials on the GLL nodes, and thus the two-dimensional mass matrix

M is also diagonal. The gradient matrices are defined by

D = eαxDx + eαyDy, (40)

where the differentiation matrices can be represented by a tensor product

form of the one-dimensional differentiation matrix D̂ = [D̂îi] = l′i(ξî) as

Dx =

(

∂ψij

∂x
, ψîĵ

)

= GξxJ [M̂ ⊗ M̂D̂] +GηxJ [M̂D̂ ⊗ M̂ ], (41)

Dy =

(

∂ψij

∂y
, ψîĵ

)

= GξyJ [M̂ ⊗ M̂D̂] +GηyJ [M̂D̂ ⊗ M̂ ], (42)

where Gξx, Gξy, Gηx, and Gηy represent diagonal matrices for the geometric

factors ∂ξ

∂x
, ∂ξ

∂y
, ∂η

∂x
, and ∂η

∂x
, respectively, at the nodal points (xi, yj). The

surface integrations acting on the boundary nodes on each face of the local

element in Eqs. (37)–(38) are represented by

Rf f̄α =
4

∑

s=1

N
∑

k=0

Rs
k

{

n · [Fα(f̄)− F∗

α(f̄)]
}

wkJ
s
k , (43)

Rgḡα =

4
∑

s=1

N
∑

k=0

Rs
k {n · [Gα(ḡ)−G∗

α(ḡ)]}wkJ
s
k , (44)

where Rs
k{·} extracts the information of {·} at the nodes situated on each

face of the local element for the face number s and Js
k is the surface Jacobian

at the nodes on each face.
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4. Numerical Results

In this section, we show computational results and validation for conju-

gate heat transfer of flow past a heated solid cylinder. We begin with a brief

discussion of how relevant parameters are determined.

4.1. Parameters for Numerical Studies

We characterize forced convection flows with three nondimensional num-

bers, the Reynolds number (Re), Prandtl number (Pr), and thermal diffu-

sivity ratio (γ) between the solid cylinder and fluid. They are defined as

follows:

Re =
UiD

νf
, Pr =

νf
χf

, and γ =
χs

χf

, (45)

where Ui is the inflow boundary velocity in our simulation, D is the diameter

of the cylinder, νf is the kinematic viscosity, and χf is the thermal diffusivity

of the fluid. Ma is the Mach number in our simulation and is chosen to be

Ma ≈ 0.01. Our choice for Re will vary from Re = 5 − 40, while we will

keep fluid and solid properties (i.e. νf , χf , and χs) fixed and hence fix Pr

and γ. Our aim is to simulate a situation where water is flowing past a heat

generating solid carbon steel cylinder. At 25◦ Celsius, this means Pr ≈ 6

and γ ≈ 90.

In order to validate our results, the heat source term Q̇ is non-dimensionalized

via the diffusive time scale t ∼ D2/χf . We write the non-dimensionalized
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heat source term via:

Q̇∗ =
Q̇D2

χfTiρcp
(46)

with Ti being some characteristic temperature in the computational domain.

4.2. Flow past a heated cylinder

The schematic description to this problem is shown in Figure 1. At time,

t∗ = 0, there is a potential flow with the temperature in the entire com-

putational domain to be Ti. Where t∗ represents the nondimensional time

t∗ = 2Uit
D

. The flow entering the domain is prescribed with a temperature Ti

and velocity ub = (Ui, 0). Figures 2 and 3 show the mesh which our com-

putations are performed upon. The cylindrical surface is represented by a

thicker black line as can be seen in Figure 3. We mesh within the cylinder and

immediately downstream of the cylinder with additional refinement in order

to capture the symmetric vortex structure that is created. The polynomials

interpolation we employ is of order N = 5. Figure 4 shows the initial flow

pattern that we employed for the simulation which is a potential flow. This

automatically introduces a slip velocity on the surface of the cylinder with a

vortex sheet of zero thickness. At t > 0 we impose ub = (0, 0) on the surface

of the cylinder. Figure 5 shows steady-state streamlines and isotherms for

Re = 5−40. We observe how the isotherm profile changes and is advected as

the flow matures to it’s steady-state. We also see how the hotter isotherms

remain near to the heated cylinder while the cooler isotherms are advected
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and elongated further downstream of the cylinder. Upon further investi-

gation it seems as though the isotherms are cooling down as the Reynolds

number increases. Figure 6 shows the steady-state surface temperature dis-

tribution along the cylinder surface. Degrees are measured starting from 0 at

the front (left) of the cylinder center and rotating counter-clockwise to 180,

at the rear of the cylinder. We compare the SEDG-TLBM results against

the Nek5000 results for the same polynomial order, N = 5. In each case, the

average temperature difference between the two profiles is about a 0.3% error

so we believe the results agree well. We also plot the maximum temperature

within the cylinder in Figure 7 which provides evidence to confirm that the

temperature within the cylinder decreases as the Re increases. Since there

is circular symmetry in our problem the maximum temperature is locate

along the horizontal diameter of the circle. It’s worthwhile to note that the

the maximum temperature location moves further away from the center and

back towards the rear of the cylinder as Re changes from 5 to 20. Between

Re = 20−40 we see that this max. temperature location moves back toward

the center. This is most likely due to the separation region where stronger

reverse flow impinges upon the rear of the cylinder. Similar results were

found in [8].

The steady-state local Nusselt number along the cylindrical surface is

plotted in Figure 8. We define Nu∗ via

Nu∗ = −D
Ti

(

∂T

∂n

)

cylinder

, (47)
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where n represents the outward pointing normal on the cylinder surface.

Towards the front of the cylinder we can observe that heat transfer increases

with Re. This is due to the dominating convection effect which the fluid

has over it’s own thermal diffusivity (i.e. Peclet number, Pe = UiD
χf

> 1).

As the fluid travels over the cylinder surface, the effect of the Reynolds

number Re plays a noticeable difference in the heat transfer. In particular,

the heat flux towards the rear of the cylinder for Re = 5 is greater over the

higher cases. This is most likely due to the absence of the vortex structure

arising from the separation. At lower Re, the temperature of the cylinder

is higher (especially towards the rear of the cylinder - as can be seen in

Figure 6) and there is less of a reverse flow, which allows for higher heat flux

to dominate between a hot, heat-generating solid cylinder and the cooler

fluid. As Re increases, the separation region increases thus trapping more

fluid. At steady-state, the temperature in the cylinder decreases (again see

Figure 6) and the greater volume of fluid in this separation region allows

for thermal heat transfer whereby the temperature difference between the

two mediums becomes smaller thus decreasing the local heat flux. We also

notice that the heat flux at the most rear location (180◦) for Re = 40 is

higher than the other cases. This, again, is probably due to the separation

where the flow which impinges upon the cylinder at 180◦ is dominating the

heat transfer process. This effect can be seen by the compression of isotherms

in Figure 5(c) for the Re = 40 case.
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Figure 1: Schematic for the conjugate heat transfer of flow past a cylinder with heat
source.

5. Conclusions

We have presented a spectral-element discontinuous Galerkin thermal

lattice Boltzmann method (SEDG-TLBM) for solving fluid-solid conjugate

heat transfer (CHT) problems. Our method provides accurate results for

CHT applications in complex geometries and hence can incorporate lattice

Boltzmann-based boundary conditions in a relatively straightforward man-

ner. The technique comes at little cost in comparison to other LB algorithms

which require extrapolation to approximate boundaries. Flow past a volu-

metrically heated solid cylinder is simulated using the SEDG-TLBM. As a

first-step, steady-state calculations are performed to exhibit the capabilities

of the algorithm. By treating the computational domain as one medium

25



Figure 2: Mesh for the conjugate heat transfer of flow past a cylinder with heat source.
Total number of elements is approx. 2, 100. Polynomial order is N = 5.
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Figure 3: Mesh near the cylinder. Thicker black line represents the cylinder surface.
Polynomial order is N = 5.

Figure 4: streamlines of potential flow which represent the initial flow conditions. t∗ = 0.
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(a) Re = 5

(b) Re = 20

(c) Re = 40

Figure 5: Steady State (t∗ = ∞) streamlines(left) and isotherms(right) for forced convec-
tion past a cylinder with heat generating cylinder at Re = 5, 20, and 40
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with discontinuous material properties (i.e. thermal diffusivity), tempera-

ture and heat flux continuity is ensured in our simulation with no additional

work required. We examine the situation where water is flowing past a solid

heat-conducting carbon cylinder for Re = 5− 40. In each case, we observe a

cooling of the cylinder as Re increases.
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6. Appendix

In this appendix, we provide more details on the derivation of the thermal

boundary conditions described in Eqs. (33) and (34). Using the relations,

f̄neq
α = f̄α − f̄ eq

α and ḡneqα = ḡα − ḡeqα , we may write Eq. (32) as the following:

ḡα − ḡegα = −(ḡα∗ − ḡeqα∗) + e2α(f̄α − f̄ eq
α ) + e2α∗(f̄α∗ − f̄ eq

α∗), (48)

noting that eα = −eα∗ and e2α = e2α∗ , Eq. (48) can be rearranged as

ḡα = −ḡα∗ + (ḡeqα + ḡegα∗) + e2α(f̄α + f̄α∗)− e2α(f̄
eq
α + f̄ eq

α∗) (49)

For α = 1, 2, ..., 8;

f̄ eq
α + f̄ eq

α∗ = 2tαρ0
[

1 + 4.5(eα · ub)
2 − 1.5(ub · ub)

]

, (50)

For α = 1, 2, 3, 4;

ḡeqα + ḡeqα∗ =
2ρ0eb
9

[

1.5 + 4.5(eα · ub)
2 − 1.5(ub · ub)

]

− tαQ̇δt, (51)

For α = 5, 6, 7, 8;

ḡeqα + ḡeqα∗ =
2ρ0eb
36

[

3 + 4.5(eα · ub)
2 − 1.5(ub · ub)

]

− tαQ̇δt, (52)

Substituting Eqns. (50), (51) and (52) into (49), we have:
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For α = 1, 2, 3, 4;

ḡα = −ḡα∗ +
2ρ0eb
9

[

1.5 + 4.5(eα · ub)
2 − 1.5(ub · ub)

]

− tαQ̇δt

+e2α(f̄α + f̄α∗)− e2α
(

2tαρ0
[

1 + 4.5(eα · ub)
2 − 1.5(ub · ub)

])

,

For α = 5, 6, 7, 8;

ḡα = −ḡα∗ +
2ρ0eb
36

[

3 + 4.5(eα · ub)
2 − 1.5(ub · ub)

]

− tαQ̇δt

+e2α(f̄α + f̄α∗)− e2α
(

2tαρ0
[

1 + 4.5(eα · ub)
2 − 1.5(ub · ub)

])

.

Upon substitution of the expressions above into ḡ+α , we arrive at the expres-

sions given by Eqs. (33) and (34).
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Below are specific formulations based on the microscopic directions α & α∗:

if e1 · n < 0 (⇔ e3 · n > 0); ḡ1 − ḡ+1 = [ḡ1 + ḡ3]

− 2ρ0eb
9

[

1.5 + 4.5(e1 · ub)
2 − 1.5(ub · ub)

]

+ t1Q̇δt+ e21(f̄1 + f̄3)

− e21
(

2t1ρ
[

1 + 4.5(e1 · ub)
2 − 1.5(ub · ub)

])

,

ḡ3 − ḡ+3 = [ḡ3 − ḡ1] = 0,

if e2 · n < 0 (⇔ e4 · n > 0); ḡ2 − ḡ+2 = [ḡ2 + ḡ4]

− 2ρeb
9

[

1.5 + 4.5(e2 · u)2 − 1.5(ub · ub)
]

+ t2Q̇δt+ e22(f̄2 + f̄4)

− e22
(

2t2ρ
[

1 + 4.5(e2 · ub)
2 − 1.5(ub · ub)

])

,

ḡ4 − ḡ+4 = [ḡ4 − ḡ2] = 0,

if e3 · n < 0 (⇔ e1 · n > 0); ḡ3 − ḡ+3 = [ḡ3 + ḡ1]

− 2ρeb
9

[

1.5 + 4.5(e3 · ub)
2 − 1.5(ub · ub)

]

+ t3Q̇δt+ e23(f̄3 + f̄1)

− e23
(

2t3ρ
[

1 + 4.5(e3 · ub)
2 − 1.5(ub · ub)

])

,

ḡ1 − ḡ+1 = [ḡ1 − ḡ3] = 0,
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if e4 · n < 0 (⇔ e2 · n > 0); ḡ4 − ḡ+4 = [ḡ4 + ḡ2]

− 2ρeb
9

[

1.5 + 4.5(e4 · ub)
2 − 1.5(ub · ub)

]

+ t4Q̇δt+ e22(f̄2 + f̄4)

− e24
(

2t4ρ
[

1 + 4.5(e4 · ub)
2 − 1.5(ub · ub)

])

,

ḡ2 − ḡ+2 = [ḡ2 − ḡ4] = 0,

if e5 · n < 0 (⇔ e7 · n > 0); ḡ5 − ḡ+5 = [ḡ5 + ḡ7]

− 2ρeb
36

[

3.0 + 4.5(e5 · ub)
2 − 1.5(ub · ub)

]

+ t5Q̇δt+ e22(f̄5 + f̄7)

− e25
(

2t5ρ
[

1 + 4.5(e5 · ub)
2 − 1.5(ub · ub)

])

,

ḡ7 − ḡ+7 = [ḡ7 − ḡ5] = 0,

if e6 · n < 0 (⇔ e8 · n > 0); ḡ6 − ḡ+6 = [ḡ6 + ḡ8]

− 2ρeb
36

[

3.0 + 4.5(e6 · ub)
2 − 1.5(ub · ub)

]

+ t6Q̇δt+ e26(f̄6 + f̄8)

− e26
(

2t6ρ
[

1 + 4.5(e6 · ub)
2 − 1.5(ub · ub)

])

,

ḡ8 − ḡ+8 = [ḡ8 − ḡ6] = 0,
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if e7 · n < 0 (⇔ e5 · n > 0); ḡ7 − ḡ+7 = [ḡ7 + ḡ5]

− 2ρeb
36

[

3.0 + 4.5(e7 · ub)
2 − 1.5(ub · ub)

]

+ t7Q̇δt+ e27(f̄7 + f̄5)

− e27
(

2t7ρ
[

1 + 4.5(e7 · ub)
2 − 1.5(ub · ub)

])

,

ḡ5 − ḡ+5 = [ḡ5 − ḡ7] = 0,

if e8 · n < 0 (⇔ e6 · n > 0); ḡ8 − ḡ+8 = [ḡ8 + ḡ6]

− 2ρeb
36

[

3.0 + 4.5(e8 · ub)
2 − 1.5(ub · ub)

]

+ t8Q̇δt+ e28(f̄8 + f̄6)

− e28
(

2t8ρ
[

1 + 4.5(e8 · ub)
2 − 1.5(ub · ub)

])

,

ḡ6 − ḡ+6 = [ḡ6 − ḡ8] = 0.
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